Binary, Octal, Decimal, Hexadecimal
โ 4 Number Bases - Binary, octal, decimal, hex
โ Real-time Conversion - All bases update instantly
โ Conversion Steps - Learn how it works
โ Programming Helper - With 0x, 0b prefixes
Current Decimal Value
255
Binary: 11111111
Hex: FF
Octal: 377
Valid digits: 01
Valid digits: 01234567
Valid digits: 0123456789
Valid digits: 0123456789ABCDEF
All Bases
| Decimal | Binary | Octal | Hexadecimal |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 |
| 2 | 10 | 2 | 2 |
| 8 | 1000 | 10 | 8 |
| 10 | 1010 | 12 | A |
| 15 | 1111 | 17 | F |
| 16 | 10000 | 20 | 10 |
| 32 | 100000 | 40 | 20 |
| 64 | 1000000 | 100 | 40 |
| 100 | 1100100 | 144 | 64 |
| 128 | 10000000 | 200 | 80 |
| 255 | 11111111 | 377 | FF |
| 256 | 100000000 | 400 | 100 |
| 1024 | 10000000000 | 2000 | 400 |
Number base conversion transforms numbers between different numeral systems: binary (base 2), octal (base 8), decimal (base 10), and hexadecimal (base 16). Essential for computer science, programming, and digital electronics.
Our converter supports all major bases with real-time conversion and step-by-step explanations. Perfect for programmers, students, and anyone working with different number systems.
๐ก Each position represents power of 2
๐ก Each position represents power of 8
๐ก The number system we use daily
๐ก Compact representation of binary
| Decimal | Binary | Octal | Hexadecimal |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 1 | 1 | 1 | 1 |
| 8 | 1000 | 10 | 8 |
| 10 | 1010 | 12 | A |
| 15 | 1111 | 17 | F |
| 16 | 10000 | 20 | 10 |
| 32 | 100000 | 40 | 20 |
| 64 | 1000000 | 100 | 40 |
| 100 | 1100100 | 144 | 64 |
| 128 | 10000000 | 200 | 80 |
| 255 | 11111111 | 377 | FF |
| 256 | 100000000 | 400 | 100 |
| 1024 | 10000000000 | 2000 | 400 |
1ร2ยณ + 0ร2ยฒ + 1ร2ยน + 1ร2โฐ
= 8 + 0 + 2 + 1
= 11โโ
13 รท 2 = 6 remainder 1
6 รท 2 = 3 remainder 0
3 รท 2 = 1 remainder 1
1 รท 2 = 0 remainder 1
Read up: 1101โ
2ร16ยน + Fร16โฐ
= 2ร16 + 15ร1
= 32 + 15
= 47โโ
1101 0110
D 6
= D6โโ
To convert binary to decimal, multiply each digit by 2 raised to its position power (from right, starting at 0) and sum the results.
Example: 1010โ to decimal
1ร2ยณ + 0ร2ยฒ + 1ร2ยน + 0ร2โฐ
= 1ร8 + 0ร4 + 1ร2 + 0ร1
= 8 + 0 + 2 + 0
= 10โโ
Hexadecimal is used because it's a compact way to represent binary data. Each hex digit represents exactly 4 binary digits (bits).
Key Advantages:
Programming languages use prefixes to indicate number bases. This helps distinguish between different numeral systems.
Standard Prefixes:
0b1010 = 10)0o12 = 10)0xA = 10)10)