Number Base Converter 2025

Binary, Octal, Decimal, Hexadecimal

๐Ÿ”ข Advanced Base Converter

โœ“ 4 Number Bases - Binary, octal, decimal, hex

โœ“ Real-time Conversion - All bases update instantly

โœ“ Conversion Steps - Learn how it works

โœ“ Programming Helper - With 0x, 0b prefixes

Current Decimal Value

255

Binary: 11111111

Hex: FF

Octal: 377

Convert Number Base

Valid digits: 01

Valid digits: 01234567

Valid digits: 0123456789

Valid digits: 0123456789ABCDEF

Conversion Info

All Bases

Binary:0b11111111
Octal:0o377
Decimal:255
Hexadecimal:0xFF

Binary Conversion Steps

255 in decimal to binary:
255 รท 2 = 127 remainder 1
127 รท 2 = 63 remainder 1
63 รท 2 = 31 remainder 1
31 รท 2 = 15 remainder 1
15 รท 2 = 7 remainder 1
7 รท 2 = 3 remainder 1
3 รท 2 = 1 remainder 1
1 รท 2 = 0 remainder 1
Read remainders from bottom to top: 11111111

Quick Number Presets

Programming Prefixes

Binary: 0b11111111
Octal: 0o377
Hex: 0xFF

Number Base Comparison Table

DecimalBinaryOctalHexadecimal
0000
1111
21022
81000108
10101012A
15111117F
16100002010
321000004020
64100000010040
100110010014464
1281000000020080
25511111111377FF
256100000000400100
1024100000000002000400

What is Number Base Conversion?

Number base conversion transforms numbers between different numeral systems: binary (base 2), octal (base 8), decimal (base 10), and hexadecimal (base 16). Essential for computer science, programming, and digital electronics.

Our converter supports all major bases with real-time conversion and step-by-step explanations. Perfect for programmers, students, and anyone working with different number systems.

How to Use

  1. 1Enter number in any base (binary, octal, decimal, hex)
  2. 2All other bases update automatically in real-time
  3. 3View conversion steps to understand the process
  4. 4Copy programming prefixes (0x, 0b, 0o)
  5. 5Use quick presets for common numbers

Number Bases Explained

๐Ÿ”ข Binary (Base 2)

Digits: 0, 1 only
Used in: Computers, digital electronics
Prefix: 0b (e.g., 0b1010 = 10)
Example: 1101โ‚‚ = 13โ‚โ‚€

๐Ÿ’ก Each position represents power of 2

๐Ÿ”ข Octal (Base 8)

Digits: 0-7
Used in: Unix permissions, old computing
Prefix: 0o (e.g., 0o12 = 10)
Example: 17โ‚ˆ = 15โ‚โ‚€

๐Ÿ’ก Each position represents power of 8

๐Ÿ”ข Decimal (Base 10)

Digits: 0-9
Used in: Everyday counting, math
Prefix: None (standard)
Example: 255โ‚โ‚€ = 255

๐Ÿ’ก The number system we use daily

๐Ÿ”ข Hexadecimal (Base 16)

Digits: 0-9, A-F
Used in: Colors, memory addresses, programming
Prefix: 0x (e.g., 0xFF = 255)
Example: FFโ‚โ‚† = 255โ‚โ‚€

๐Ÿ’ก Compact representation of binary

Number Base Conversion Examples

DecimalBinaryOctalHexadecimal
0000
1111
81000108
10101012A
15111117F
16100002010
321000004020
64100000010040
100110010014464
1281000000020080
25511111111377FF
256100000000400100
1024100000000002000400

How to Convert Between Bases

Binary to Decimal

Method: Multiply each digit by 2^position
Example: 1011โ‚‚ to decimal

1ร—2ยณ + 0ร—2ยฒ + 1ร—2ยน + 1ร—2โฐ

= 8 + 0 + 2 + 1

= 11โ‚โ‚€

Decimal to Binary

Method: Divide by 2, track remainders
Example: 13โ‚โ‚€ to binary

13 รท 2 = 6 remainder 1

6 รท 2 = 3 remainder 0

3 รท 2 = 1 remainder 1

1 รท 2 = 0 remainder 1

Read up: 1101โ‚‚

Hexadecimal to Decimal

Method: Multiply each digit by 16^position
Example: 2Fโ‚โ‚† to decimal

2ร—16ยน + Fร—16โฐ

= 2ร—16 + 15ร—1

= 32 + 15

= 47โ‚โ‚€

Binary โ‡„ Hexadecimal

Method: Group binary in 4s
Example: 11010110โ‚‚ to hex

1101 0110

D 6

= D6โ‚โ‚†

Programming Applications

๐Ÿ’ป Common Use Cases

  • Binary: Bitwise operations, flags, permissions
  • Octal: Unix file permissions (chmod 755)
  • Hex: Color codes (#FF5733), memory addresses
  • IP Addresses: Converting between decimal & binary
  • Data Storage: Bytes, KB, MB calculations
  • Networking: Subnet masks, MAC addresses

๐ŸŽจ Color Codes (Hex)

#FF0000 = Red (255,0,0)
#00FF00 = Green (0,255,0)
#0000FF = Blue (0,0,255)
#FFFFFF = White (255,255,255)

Frequently Asked Questions

1. How do I convert binary to decimal?

To convert binary to decimal, multiply each digit by 2 raised to its position power (from right, starting at 0) and sum the results.

Example: 1010โ‚‚ to decimal

1ร—2ยณ + 0ร—2ยฒ + 1ร—2ยน + 0ร—2โฐ

= 1ร—8 + 0ร—4 + 1ร—2 + 0ร—1

= 8 + 0 + 2 + 0

= 10โ‚โ‚€

2. Why is hexadecimal used in programming?

Hexadecimal is used because it's a compact way to represent binary data. Each hex digit represents exactly 4 binary digits (bits).

Key Advantages:

  • Shorter representation (FF vs 11111111)
  • Easy conversion to/from binary (4 bits = 1 hex)
  • Used in color codes, memory addresses, MAC addresses
  • 1 byte = 2 hex digits (00 to FF = 0 to 255)

3. What are the programming prefixes for different bases?

Programming languages use prefixes to indicate number bases. This helps distinguish between different numeral systems.

Standard Prefixes:

Binary: 0b or 0B (e.g., 0b1010 = 10)
Octal: 0o or 0O (e.g., 0o12 = 10)
Hexadecimal: 0x or 0X (e.g., 0xA = 10)
Decimal: No prefix (e.g., 10)